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1. Introduction
Ronlatte ls a well-designed device for gamblers.
For statisticians, it is a giant-size puzzle. In this
paper, a combined approach of probability, statistics,
combinatorics, and cryptography will be used to solve
the roulette puzzle. Firstly, I shall prove that the
number-arrangement on both American and Eurcpean
roulette wheels are not random; they both have their
own unigue pumerical pattern or numerical order.
pletion of this T;onf means actually that the

1s theoretically breakable.

Secondly, there exists a "Red-odd versus black-
@ven” differential. It is known that its red numbars
are equal to its black numbers and its odd numbers are
equal to its even numbars; so its red-odd numbers
should be equal to its red-even numbers and its black-
“ﬂlﬁ numbers should be equal to its black-even 5

on both American and European roulette wheels. But,
through observation, they are not egual to each other.
This differential can not be eliminated under current
36-number scheme, only a modified 48-number scheme
will be able to. The existence of this differential
maans that the system is not flawless, or it is
practically solvable.

Fext, a success-region method is suggested.
After non-randomness has been proved, we actually
converted the of rs on a roulette wheal
into a sequence of natural numbers instead of being a
set of randam numbers. So, we may choose a segment or
any segment of this sequence as our success-region.
Besides, during the proving 8, we fourdd that in
a three-way division, or some areas thair

I - lee are not equal.

ulﬂﬁ random walk or Markovian models have to
be menti due to the existence of zero and double-
zero on the roulette wheels. But, my colleagues may
soon find out that once the non-randomness had been
proved, then the roulette game does not belong to
random walk models, and classical gamblers’ ruin
should mnot apply. This eventually leads to the
conclusion that roulette game is no longer a game of

2. The Solution to American Rouletta
At firet, let us take a lock at the diagram of an
American roulette. In this dlagram, the two numbers
0 and 00 are colored starting with
ik 1 and pr clockwise, red and black are
ored in every other space. See Figure 1.
American roulette follows a trichotomy rule or a

~- three-way division im which 356 numbers are equally

divided h;:o three ?tth . h!hln, a donbl%—lonping
technique ia , in ch numbers in each set are
selacted Y. @Such looping technigues are
COmmon

in modern computer programming altheugh
roulette was invented at a much earlier date. Tt 3-
known that Pascal invented the first calculating
machine in 1642. Although the inventor of roulette is
remained anonymous, it is pessible that Pascal
simultanecusly invented the game.

The procedure of making an American roulette is
as following:
Step 1. Two zeros are placed in the front. 36 numbers
are equally divided into three sets as shown in Figure

2,
Step 2. The aumbers in each set are now selected
-tgodlcann {1) the tiles of numbers 1 and 2 are
taken from the first set, (b the tiles of numbers 13
and 14 from the second set, (c) the tiles of numbers
35 and 36 from the far end of the third sat,
inversaly, and {d) the tilsa of numbars 23 and 24 ace
taken The far end of the second set, also
inversely. <The result is shown in Figure 3. (The
shadowing parte indicate the direction of each move) .
3. The same process 1s repeated. [a) the tilea
of numbers 3 and 4 are taken from the first set, (b)
the tiles of numbers 15 and 16 from the second sat,
(c) the tiles of numbers 33 and 34 from the far end of
the third set, inversely, and (d) the tiles of numbers
21 and 22 are taken from the far end of the second

set, also inversely.
Step 4. Again, the same pr
tiles of numbers 5 and 6 ar n from the rfirst set,
{b) the tiles of mumbers 27 d 18 from the second
set, (c) the tiles O Hlkbers 31 and 32 are taken from
the far end of The third set, inversely, and (d) the
tiles of numb@r® 19 and 20 are taken from the far end
of the second set, alsc inversely.
Mhis point, all the tiles in the second
3 used up. Consequently, (a) the tiles of
8 are taken from the first set, (b) the
ers 11 and 12 from the first set, and (e¢)
the tiles of numbers 29 and 30 from the third set,
inversely. (d} the tiles of numbers 25 and 26 are
taken from the third set, alsc inversely.
Step 6. Finally, (a) the tiles of numbers 9 and 10 are
taken from the first set, and (b) the tiles of numbers
27 and 28 are taken from the third set, but inversely.
All the results far, are shown io Figure 4.

In next s hese two rows of numbers are
separated and cor from end to end. When it is
expanded into a full cirecle, it is an American
roulette wheal. Now, the odd and even numbers
naturally appear in every other two spacea. Alsc it
is alternatively in color of red and black in every
other single space. Thus, American roulette may not
completely preserve the idea of randomness, it does
carry the beauty of symmetry to its utmost.

3. The Sclution to Eurcpean Roulette

The diagram of an European roulette is shown in Figure
5. In this diagram, the number 0 1s colored green.
Next, starting with number 32, the red and black
spaces are colored alternatively. ) ¥

The making of European rouletta is a 1ittle bit

more sophisticated than that of American roulette. It
does preserve the idea of randomness better, but does
not possess the beauty of symmetry. The procedure of
making an European roulette, step by step, is as
following:
Step 1. Place the single-zero in the front, then
equally divide all other 36 numbers intc 4 rows with
9 numbers in sach row. The first row includes numbers
1 to 9, the second row includes numbers 10 to 18, the
third row includes numbers 19 to 27, and the fourth
row includes numbers 28 to 36. We shall randomly
select one number from each row. The interesting part
is that the row selection is also random.

In the very first round, we randomly select
number 7 from the first row, number 16 from the second
row, number 25 from the third row, and number 35 from
the fourth row. We eall these four numbers our
insertion group, since we want to put these numbars
aside for the time being, and to be inserted later.

Up to now, the framework for an European roulette
looks like in Figure 6.

Step 2. In the second round, (a) take number 32 from
the fourth row, (b) take the number 15 from the second
row, (c) take number 19 from the third row, (d) take
number 4 from the first row. Notice that the row
selection continues to be random. These four numbers
are our first group. The sitvation now is shown in
Figure 7.

Step 3. In the third round, [a) take numbar 21 from
tha third row, (b) take number 2 from the first row,
(c) take number 17 from the second row, and [d) take
number 34 from the fourth row. Thuse [our numbers are
called our second group.

Step 4. In the fourth round, {a) take number & Crom
the (irst row, (b) take number 27 from the third row,
{c) take number 13 from the second row, and (d) take
number 36 from the fourth row. These numbers are
called our third group.

Step 5. In the fifth round, (a)} take number 11 from
the second row, (b) take number 30 from the third row,
(c) take number 8 from the first row, and (d) take
number 23 from the third row. These four numbers are
called our fourth group.

Step 6. In the sixth round, (a) take number 10 from

is repeated. (a) the
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the second row, (b) take number 5 from the first row,
(c) take number 24 from the third row, and (d) take
number 33 from the fourth row. These four numbers are
called our fifth group.
Step 7. In the seventh round, (a) take number 1 from
the rfirst row, (b) take number 20 from the third row,
(c) take number 14 from the second row, and (d) take
number 31 from the fourth row. These four numbars are
called our sixth group.
Step 8. In the eighth round, (a) take number 9 from
the first row, (b) take number 22 from the third row,
(c) take number 18 from the second row, and (d) take
number 29 from the fourth row. These four numbers are
called our seventh group.
Step 9. In the final round, (a) take number 28 from
the fourth row, (b) take number 12 from the second
row, (c) take number 3 from the first row, and (d)
take number 26 from the third row. These tour numbers
are called our eighth group.

We had completed our selection process, and the
current sitvation on the framework is shown in Figure

10. After the selection process is completed,
all groups are in good order. Now we shall expand it
into & full circle with the single-zero in the very
front. Keep in mind that, up to now, our insertion
group is still in outside, no action has been taken

yet.

Next, we shall start our insertion process, we
shall insert those four numbers into the circle at
random. The current situation on the framework is
shown in Figure 9.

Step 11. This is our final step of making an European
roulette. After the insertion process is completed,
we shall color the red and black alternatively on each
single space. Then, the European roulette, or the
French roulette, is completed. Its diagram had
actually been shown before, as previous Figure 5. See
Figure 5.

4. T"Red-odd versus Black-even" Differential

It is known that, in a roulette, its red numbers
are always equal to its black numbers, and its odd
numbers are always equal to its even numbers, they are
18 each. But it is far from the general thinking that
its red-odd numbers are equal to its red-even numbers,
and its black-odd numbers are equal to its black-aven
numbers; they should be 9 each accordingly. In fact,
there are 10 red-odd numbers an 8 red-even numbers;
and there are 10 black even numbers and 8 black-odd
numbers. Thia statement is held true for both
American and wheel.s Readers may verify this
by checking both American and European roulette
layouts as shown in F 10 and 11.

We name this differential as "red-odd versus
black-even" for sake of convenience. Literally, it
should be named as "red-odd versus red-even and black-
odd versus black even" differemtial.

Obviously, this fact shall affect the play.

that a player makes a simple bet on red,
black, odd, even, small (numbers 1 to 18), or large
(19 to 36). We call these simple bets as our normal
play. It follows:

The probability of winning is 18/38 = 0.4737.

The probability of losing is 20/38 = 0.5263 (due
to the existence of 2 zeroces).

The difference between the winning and losing
probabilities is 0.0526, which also represents the
:u::;srﬂvuugn of having two zeroces (since 2/38 =

Suppose that the player now makes a compound bet
on red and odd at the same time. It follows:

The probability of winning ia 10/38 = 0.2632.

The probability of losing is 12/38 = 0.3158.

Tha probability of ending as draw is 16/38 =
0.4210.

The same probabilities ars also true for hatting
en black and even at the same time. Again the
difference between the probabilities of winning and
losing is 0.0526. We consider such a compound bet is
a less aggressive play while compared with a normal
play since it generates a draw case. The chance of
being a tie game is 0.4210. 1In other words, there is
about 42% of the time the player will end up as draw.

Next, suppose that the player makes a
compound bet on red and aeven at the same time. It
follows:

The probability of winning is 8/38 = 0.2105.

The probability of leosing is 10/38 = 0.2632.

The probability of ending as draw is 20/38 =
0.5263.

The same probabilities are also true for hetting
on black and odd at the same time. The difference
between the probabilities of winning and losing is
again 0.0526. We consider such a compound bet a least
aggressive play while compared with a normal play.
Tha chance of being & tie game 1e 0.5261. In other
words, there is about 52% of the time the player will
end up as draw.

For an Eurcpean roulette which is the single-zero
case, the probabllities can be computed the same way.
Suppose that the player makes a simple bet on red,
black, odd, even, emall, or large numbers. It
follows:

The probability of winning is 18/37 = 0.4865.

The probability of losing is 19/37 = 0.5135.

The difference between the winning and losing
probabilities is 0.0270, which also represents the
house advantage due to having a single-zero since 1/37
= 0.0270.

Suppose that the player makes a compound bet
on red and odd at the same time. It follows:

The probability of winning is 10/37 = 0.2703.

The probability of lesing is 11/37 = 0.5135.

The probability of ending as draw is 16/37 =
0.4324.

The same probabilities are also true for betting
on black and even at the same time. The difference
between the probabilities of winning and losing is
again 0.0270. We consider such a compound bet a less
aggressive play while compared with a normal play
since it generates a draw case. The chance of being
a tie game is 0.4324. In other words, there is about
43% of the time the player will end up as draw.

Next, suppose that the player makes a compound
bet on red and even at the same time. It followa:

The probability of winning is 8/37 = 0.2162.

The probability of losing is 9/37 = 0.2432.

. 540?“ probability of ending as draw is 20/37 =

The same probabilities are also true for betting
on black and cdd at the same time. The difference
between the probabilities of winning and losing is
again 0.0270. We consider such a compound bet a least
aggressive play while c with a normal play.
The chance of being a tie game is 0.5405. In other
words, there is about 54% of the time the player will
end up as draw.

The question follow is whether it ias possible to
eliminate this differemtial. With the current 36-
number scheme (0 and 00 uncounted for) it is not
possible. Only within a 48-number scheme, it can be
done. Simply add one more set of 12 numbers (from 37
te 48), them apply same double-locping techaique
introduced in Section 2 previously, it is no need to
repeat it here. In other words, we shall have 12 each
of red-odd, red-even, black-odd, and black-even
numbers. Of course, all the odds, payoffs and layouts
have to be adjusted accordingly. The new modified 48-
number roulette may not be practically usable, since
it Ffurther reduces the winning chance on a single-
number bet which 1s already hard enough under the
current schema. However, it is the only alternative
or possible trade-off.

5. A "Success-region" Method

In this method, we view the roulette as a
spinning wheel experiment. The wheel is to be scaled
from 0.00 to 2.00 uniformly. For each space or equal
interval, the probability for the spin to stop iz the
same. Tha approach has been first mentioned by
Frassr.! The theory behind such an experiment is

uniform distribution. For an uniform probability
distribution, its probability density function is:
L 1fb-a) ascs x <H
£f(x) =[o elsewhere e
and its distribution function is F(x) = | f(x)dx, or
' {x-a)/(b-a) awx<h
Fix) =)0 x<a
1 x>b

As we apply it to case of roulette, we shall let
a-valpa = 0, and b-value = 38. Since we have 38
spaces, or equal intervals on our wheel, and the .
probabllity for the spinner stopping on each space is
1/38 =0.0263.
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There is a good reason to apply uniform
distribution here. After the non-randomness had been
proved, we may consider that the numbers on a roulette
wheel are no longer a set of random numbers, but a

of natural numbers. Therefore, the success-
region technigque means to select an adequate segwent
of the sequence.

Mathematically, it can be stated as follows:

Let be the probability of choosing ith number
for our player, then P(Ay) = 0.0263, with 1 =1,...,38

and E;J’P[ai} - P{llj + P{Az} * e P(An] = 1.0000.
Then, a player will choose his success-region as
piasUal. . Uay = é_ P(Ry), where 1 = k  n.

and his failure-region will be:

P(ageqU ag,l...Uay) -i%;;l P(Ay), 1 # K¢l € n.

The key words in this method are segment or
partial sequence. In other words, we are choosing
several numbers in an entire sequence to cover the
winning number as possible; through the use of unifcrm
distribution.

Besides, in the process of making an American
roulette, wa found that for a three-way division, the
,—w‘znhlbillthl for each region are not equal, two

2gions have higher probabilities than the other one.
~ross reference with Figure 2 in Section 2 will be
helpful. This finding cam also support our theory.
6. Random walk or Markovian Model

In this section, we shall discuss the classical

lers” ruin problem, which presents a typical
random walk or Markovian model. It can be formulated
as follows: A gambler has k units capital, and his
opponéant has (a-k) units capital. The total capital
in tha is a, eince k + (a-k) = a. The
probability of his winning is p, and the probability
of his los is g, also p + ¢ = 1. For each win, the
gambler receives one unit of capital from his
opponent, and for each loss, he pays one unit of
capital to his opponent. Y, the gambler is
taking a random walk along the capital axis. If he
reaches the left end which means his ruin. If he
reaches the t & d which means his success (gaining
all the capital).

Let us concentrate only on the proebability of hias
ruin; given all the a, k, p, g values, and let g
indicate the probability of his eventual ruin, all we
have to do is to solve a first order difference

equation
® Py -1
ion g5 = 1, and Gy = 0.

with
Its solution had been offered by many
statisticians and -‘-thmti ians as follows:
/ - /

+ q-qk

- P - -
An &mﬁe l.oy:tinn is also provided by Kemeny,

/™ aell, and By substituti =r, r<i,
V.—nqlp-llr- The answer is "o Wa
1 - 2k
q =~ 1 =

The scussion of "classical gamblers’ ruin"
problem is necessary here since it applies to all
games of chance. My point is that since the number-
arrangement on roulette wheels had been proved not
random, "Red-odd versus black-even" differential had
been revealed, and it is also found that the
probabilities for some areas are not equal, these
facts indicate that roulette is not flawless, it is
not a perfect game of chance. These facts could
offset a perfect game of chance. These facts could
offset some of house advantages. In some cases, one
play can have advantages over the other, for exaumple,
playing red and odd against playing red and even, etc.
In other words, after non-randomness had bean proved,
roulatte may no longer belong to random walk or
Hax.:kmiaa models; therefore, the "classical gamblers’
tuin® may not apply to the case of rouletta.

7. <Conclusion

Roulette 1s an interesting and intriguing game.
It has perplexed people for gquite some time. It is
about time for roulette to be solved completely. In
this paper, I had revealed some of its secrets, if not

all. I have a few conclusions:

Cne of my main purpeses is Lo make my colleagues
aware that not to use roulette to be an example of
randomnees in writing statistical texts. This is a
common error, some have done so. I have no difficulty
to provide you a list of book titles, or you can find
by yourself in the library or on your bookshelf. Even
Von Neumann and Morgenstern u_j‘ght have overloocked on
this in their classical work.

Since I am a statistician, not a gambler, the
statistical proof is my top priority, winning comes
second. This does not mean that statisticians can not
win. In this paper, 1 had clearly solved the
structural or hardware part problem of roulette. To
guarantee the win, one needs to do some more homework
which means the software part work. I believe that
both eclassical analysis and Bayesian analysis can
produce winning programs. In other words, there may
be only one hardware solution, but there are more than
one software solution. Another analogy is that just
like building an economic model, the structural
equation is given, but coefficients still need to be
filled in.

In this paper, I had mentioned computer before,
but I did not use a computer. Anyone who had
fundamental statistical training can tell that all I
had applied is statistical reasoning. It is rather a
manual or human job, not a computer job. Roulette is
a4 typical problem for statisticians, not for
mathematicians or computear programmers; for
operational researchers, maybe. Of course, I shall
not underestimate the power of a computer; it will be
very useful im our next stage -- to write winning
programs as I had menticned earlier.

There jis one conclusion on the theoretical
aspect. After the non-randomness has been proved,
Roulette may not belong to the family of random walk
or Markovian models. Therefore, the "classical
gamblers’ ruin® may not apply to the case of roulette.
It further leads to the conclusion that roulette is not
a game of chance. More research work can be done
along this general direction.

*Thanks to Professor J. Stuart Hunter, our President,
for approval of the topic, so it can be presented in
the Section of Sports.

**There was an article in JASA (September, 1982)
mentioned that roulette is a statistical problem.
Since it is also a gambling in nature, I did copyright.
my basic solutions in 1982.

1. Fraser, (1960, pp. 65-67).

2. FKemeny et al., (1966, pp. 210-212).

3. Von Neumann and Morgenstern, (1947, p. 87).
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