
Self-organizing Maps vs. Backpropagation:An Experimental Study �Josef G�OPPERT and Wolfgang ROSENSTIELLehrstuhl f�ur Technische Informatik, Sand 13, 72076 T�ubingen, Germanygoeppert@peanuts.informatik.uni-tuebingen.deAbstract. Counter-propagation architecture with a self-organizing map in the com-petition layer is a powerful tool in various domains of signal processing and functionapproximation. Adopted with interpolation techniques in the output layer, the perfor-mance can be raised once more. Though the number of neurons is minimised the precisionof the output is increased. Good and fast convergence of the self-organizing map, topo-logy preservation combined with interpolated real output values may be an alternative tobackpropagation for several applications. In this paper we compare the evaluation resultsof counter-propagation architecture with backpropagation trained feed-forward nets. Theperformance is tested with a real evaluation problem.1 IntroductionNeural Networks with feed-forward structure are commonly used in various applicationdomains. Initially used for pattern recognition tasks they have turned out to be suitablefor several other tasks like function approximation or general data evaluation. A feed-forward net can solve any unambiguous evaluation problem in arbitrary accurate precision,if its architecture is appropriate and the correct interconnection weights are found. Thetraining of the weight values can be realized with the backpropagation algorithm [6]. Thisalgorithm realizes a gradient descent in an error landscape. This type of optimizationmethod is mathematically well known and is able to �nd a minimal weight con�guration.But nevertheless feed-forward nets with backpropagation have turned out to be di�-cult to handle:� Estimation of the number of layers of this net is very di�cult.� The ideal number of neurons in the hidden layers is not known.� The convergence of the backpropagation algorithm depends strongly on its trainingparameters.� The algorithm may converge to local minima. This depends on the training para-meters and especially on the initial weight values.� Large time can be needed for the convergence of the algorithm.�In Proc. of Workshop Design Methodologies for Microelectronics and Signal Processing, P. 153-162,Institute of Electronics, Silesian Technical University, Giwice, Poland, Oct. 1993.



� Interpretation of trained weight values is very di�cult because of the distributedcharacter of information storage.The development of a feed-forward net, either needs a lot of experience, exact knowledge ofdata properties or comparison of evaluation results of a large number of training cycles.These properties are a big hindrance to application of feed-forward nets in industrialenvironment.The counter-propagation network [3] tries to overcome these problems by using anothertype of neurons in the competition layer. Information is stored locally at one neuron. Onlythe neuron with the biggest similarity to the input vector (the winner of competition)de�nes the output of the network, all other neurons are ignored. This type of network iscommonly used for direct and inverse function approximation tasks.A very common idea in the competition layer is the use of a self-organizing map(SOM) [4]. This unsupervised training algorithm converges to a solution which approxi-mates input data by adapting prototype vectors. As an additional feature of this algorithmthe neighbourhood relation of neurons is considered, which leads to a topology preser-ving mapping of the training data. This algorithm shows high ability in adaption tocomplex nonlinear data and has fast and stable convergence. Another algorithm which isinspired by the SOM algorithm is called \neural gas" [5] which realizes a mapping withoutknowledge of optimal data topology, but without topology preservation.The use of interpolation techniques in the output layer may increase the performanceof the system once more. Interpolation produces real output values and allow to workwith SOM's of reduced size. Two di�erent interpolation methods [1] using geometricaland topological interpolation are used.2 Used ArchitectureIn this work we are using the normal counter-propagation architecture with a self-organi-zing map in the competition layer. A schematic representation is shown in �gure 1.
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Figure 1: Architecture of the counter-propagation network.The input layer sends the input values to the competition layer. Simple mathematicaloperation like normalization can be applied before. In the competition layer one input
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Figure 2: Training of the output layervector is compared to all prototype vectors of the neurons. The best matching unit issearched for. It also calculates the interpolation parameters. The output layer associatesthe output vector with the winning neuron with respect to the interpolation parameters.Each neuron in the competition layer represents an association of an input vector toits corresponding output con�guration. The di�erence between the input vector and thecon�guration stored at a neuron i is de�ned by a distance function d, in this case by theeuclidean distance:Di = d(X;W(in)i ) W(in)i : Weight vector (Prototype)Di = rPnj=1 �xj � w(in)i;j �2 euclidean distance (1)2.1 The training of the NetworkTraining of the network is divided into two parts. First unsupervised training of the self-organizing map approximates the input vectors. The prototype vectors of the neurons arefound as a con�guration with minimum distance between input vector and correspondingwinning neuron. The second step is a supervised adaption of the output weights (outstartraining).The desired output of the net is predetermined. Thus this information can be usedto train the competition layer. The idea is to combine the n-dimensional input vectorand the m-dimensional output vector to a n +m-dimensional training vector and to dotraining in n+m-dimensional space. This type of training realizes implicitly an associationof the input-output vectors. It represents some kind of supervised SOM training, helpsto come to a faster convergence and gives preference to organize the map according toinput-output relationship (See �gure 2).After the training, this matrix is splitted into its input part W(in) and its output partW(out). Some cycles of weight adaption according to the outstar training procedure may
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3 ResultsThe methods described in the previous section are used to solve a real evaluation problemin the domain of gas recognition [2]. It was shown that the self-organizing map is able tosolve this type of problem, if enough neurons are used. Here the con�guration of standardcounter-propagation and interpolation methods is compared to a backpropagation net.3.1 Evaluation problemNew sensor systems, developed at the University of T�ubingen, are able to do continuouscontrol of chemical processes, exhaust gas and waste water. Chemical and biochemicalmembranes are used in order to achieve multi-component systems, which are evaluated byinterference spectra in the range of visible light. The variation of thickness of polymericalmembranes is a result of absorption of organic solvents from its environment.The optical part consists of a �ber, placed perpendicularly to the polymer �lm whichprovides light in the range of 300 to 720 nm by a XENON light source. The re
ected lightis analysed by a diode array spectrometer with 32 spectral diodes. The exact concentrationof used gases for the training spectra is known by the settings of mixing unit. Training isdone with a subset of 120 input-output vectors. The evaluation of the error is done with1080 di�erent input vectors. The evaluation error is calculated as the root mean square(RMS) error of 10 independent tests. The standard deviation of this tests is calculated.3.2 Counter-propagation and interpolated SOMIn a �rst step, data is evaluated according to the original counter-propagation algorithm.Each winning neuron in the competition layer is associated to an output value. So thenumber of possible output values cannot exceed the number of neurons in this layer.This is the reason why a small number of neurons produces a big error (�gure 5). Theerror is considerably decreasing for a bigger number of neurons. The algorithm has acertain convergence to con�gurations with the similar evaluation error. This propertycan be con�rmed by the small range of variance of the RMS error on the validation data(see standard deviation in �gure 5). The standard deviation is smaller than the scale ofresolution and therefore not visible. This also holds for the following �gures 6 and 7.
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cycles as in the previous subsection were used, but with the application of geometricalinterpolation of three winners. All con�gurations show better results. Even with a smallnumber of neurons, the results are very good. In fact, four neurons being geometricallyinterpolated, lead to a better output than 16 WTA output neurons, The good result withsmall map size con�rms the extrapolation capacities. The variance of the mean errorincreases, but remains small. So di�erent training cycles lead to similar con�guration andstable convergence.
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First it can be noticed, that backpropagation is able to solve the given evaluationproblem. A linear neuron results in a RMS error of 4:2%. With increasing numberof neurons, the error decreases and seems to reach about 2% (SOM: 1:5%). In fact,backpropagation with 4 neurons in the hidden layer has a better result as interpolatedSOM with 4 neurons, but unlike SOM, increasing the number of neurons didn't lead tobetter results. Considering �gure 8 a big standard deviation of the remaining error after2000 training cycles can be seen, which re
ects an uncertain convergence. There are onlyone or two, out of ten tests responsible for this big variance (training get stuck in localminima, see Min/Max error in �gure 8). To know if the training was successful, di�erenttests are necessary.
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RMS ErrorFigure 10: Relative RMS error of validation data as a function of training cycles.3.4 ComparisonIn the presented evaluation problem, good and stable convergence can be observed forthe counter-propagation net and the self-organizing map with interpolated output. Con-vergence of backpropagation turned out to be di�cult. Several times it get stuck in localminima, and the over-learning e�ect made it di�cult to �nd optimal training parameters.It can be noticed that for a small (but the same) number of neurons in the hiddenlayer, the backpropagation net is still better, but incrementation of the number of hiddenneurons, doesn't lead to better results. This is due to the fact, that incrementing thenumber of neurons increments also the risk to get stuck in a local minimum, one of themajor disadvantage of the backpropagation algorithm. Contrary for counter-propagation,incrementation of the number of neurons doesn't raise the risk of local minimum, butresults in a bigger number of used prototypes, which leads to a better approximation.For this reason, more neurons can (and will) be used in counter-propagation than inbackpropagation. Notice also, that the training of 20 neuron SOM is faster (� 10 sec.)than training of 4 neuron backpropagation (� 2 min). The best overall result was obtainedby the interpolated SOM (see table 1).Table 1: Comparison of the best con�gurations of all methods.Method Error Neurons in hidden layerGeometrical interpolation 0:015 20Topological interpolation 0:017 20Backpropagation 0:020 4 : : : 16Winner take all 0:023 20The problems, discussed in the introduction and the problems, seen in the given eva-luation problem make it di�cult for inexperienced users to develop backpropagation nets.Especially in industrial environment the time and know-how of backpropagation trainingis not available and the uncertain convergence properties prevent the use in security re-levant domains. This is completely di�erent for counter-propagation and self-organizingmaps. User friendly design of the network architecture and certain convergence allow afast development of applications and the de�nition of statistically signi�cant statementsof its properties. The use of output interpolation allows the reduction of neurons in thecompetition layer and increases the precision of output values.



In fact there are some application domains, where self-organizing maps cannot beused, but in large domains of signal processing and function approximation the counter-propagation architecture is able to solve the given problem and to take advantage of itsproperties, described in this paper.4 ConclusionUsing counter-propagation architecture and interpolation of output aims to applicationdomains which are traditionally dominated by feed-forward nets, trained with backpropa-gation algorithm. If output interpolating results deliver as good values as backpropagation| shown in this paper | it might be interesting to replace backpropagation by counter-propagation and self-organizing maps. This is advantageous because of stable convergenceof the SOM, less risk of local minima, better interpretation tools for training result (localinformation storage) and fast training.In this paper two completely di�erent evaluation methods are used. The counter-propagation architecture, using a self-organizing map in the hidden layer and a feed-forward net, using backpropagation training. In the given type of problem, the counter-propagation net leads to better results, faster training and stable convergence. Compari-son of both methods showed that convergence properties of the backpropagation algorithmmake it di�cult to use this type of properties in an industrial environment.References[1] J. G�oppert and W. Rosenstiel. Topology-preserving interpolation in Self-Organizingmaps. In Proceedings of NeuroNimes 93, pages 425{434, Nanterre, France, 10 1993,EC2.[2] J. G�oppert, H. Speckmann, W. Rosenstiel, W. Kessler, G. Kraus, and G. Gauglitz.Evaluation of spectra in chemistry and physics with kohonen's selforganizing featuremap. In Proceedings of NEURO NIMES 92, pages 405{416, Nanterre France, 11 1992.[3] Robert Hecht-Nielsen. Counterpropagation networks. In Maureen Caudill and CharlesButler, editors, Proceedings of the IEEE First International Conference of NeuralNetworks, pages II:19{II:32, Piscataway, NJ, 1987. IEEE.[4] T. Kohonen. Self-Organized Formation of Topology Correct Feature Maps. BiologicalCybernetics, pages 59{69, 1982.[5] T. Martinez and Schulten K. A \neural gas" network learns topologies. In Kohonenet al., editor, Proc. Int. Conf. Arti�cial Neural Networks, pages 397 { 407, EspooFinland, 6 1991.[6] D.E. Rumelhard and J.L. McClelland. Parallel Distributed Processing: Explorationsin the Microstructure of Cognitron, I, & II. MIT Press, Cambridge MA, 1986.


